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INTRODUCTION

Rising energy costs as well as current and proposed noise regulations have
prompted continuing research and development of lighter weight, improved noise-
suppression systems for the turbofan engines of commercial aircraft. The use of
uniform acoustic duct liners (liners with wall impedances that do not wvary axially
or circumferentially) to suppress the noise generated by these turbofan engines is
well established., However, the above factors require that acoustic-liner designs be
continually refined and updated to incorporate new concepts. Recently, variable-
impedance liner concepts (fig. 1) have been considered in the design of more effec-
tive noise-suppression systems.

Literature on axially segmented liners, a concept initially derived by Zorumski
(ref. 1), is exhaustive, Lester and Posey (ref, 2) have shown that an axially seg-
mented liner with two sections gives more suppression than the best uniform liner.
Sawdy, Beckemeyer, and Patterson (ref. 3) have shown that this increase in suppres-
sion is due to a scattering of the sound at the first axial discontinuity into higher
order radial modes, which are then more highly damped by the second section. How-
ever, certain characteristics of axially segmented liners limit their usefulness,
These include lack of a broadband attenuation spectrum and inability to outperform
uniform liners for well cut-on modes (ref. 4).

Mani (ref. 5) observed experimentally that an additional suppression of as much
as 5 dB could be obtained at some directivity angles by circumferentially seqmenting
a uniform liner. He suggested that the increased suppression was because of scatter-
ing of acoustic energy into higher order circumferential modes, which were more highly
damped. In addition, Mani suggested combining axially and circumferentially seg-
mented liners to form a checkerboard pattern, These experimental findings motivated
researchers to develop analytical models to verify these findings. Thus, in this
instance, duct-acoustics experimental work has preceded and guided analytical
development in liner technology.

Development of reliable analytical models for predicting noise suppression in
ducts with circumferentially segmented liners is a prerequisite to the optimum design
of these liners. Watson (ref. 6) developed a no-flow model for a rectangular duct
based on a finite-element method, while Astley et al. (ref., 7) incorporated the
effects of a sheared mean flow into a circular duct using the finite-element method.
Since the finite-element methods developed in references 6 and 7 are in core solu-
tions, the number of circumferential strips is severely restricted and the effects of
the sound source are difficult to evaluate. These models are therefore not suited
for optimization studies, Namba and Fukushige (ref, 8) used the equivalent surface-
source method to evaluate attenuation properties of circumferentially segmented
liners in a rectangular duct with uniform mean flow. They concluded that circum-
ferentially segmented acoustic liners bring about modal transfer of sound energy
between modes of different circumferential wave numbers and lead to higher power
attenuation levels and broader effective attenuation bandwidth than a uniform
liner. Watson (ref., 9) used the Galerkin method (ref, 10) to evaluate attenuation
properties in circular ducts without mean flow. Results indicated that circumfer-
entially segmented liners scatter energy between circumferential modes of different
orders and lead to broader attenuation curves., However, before circumferentially
segmented liners can be fully evaluated, additional studies evaluating the effects of



frequency, source complexity, and duct length are needed. Such liners should also be
optimally designed to achieve maximum suppression and their off-optimum properties
should be explored before their potential benefit can be fully realized.

This paper assesses the relative merits of circumferentially segmented liners
by comparing their optimum attenuation properties with those of optimized uniform
liners. Off-optimum properties are also discussed as well as effects of frequency,
source complexity, and duct length, The analytical prediction program developed in
reference 9 is used in conjunction with an optimization method to compute optimum
properties for the uniform and segmented liner. The optimization method uses the
pavidon-Fletcher-pPowell algorithm (ref., 11). However, a series of two-dimensional
contour maps is used to obtain good starting values for the algorithm. Both plane
and circumferential standing-wave sources are considered in the study. Finally,
emphasis is placed on segmented-lining configurations consisting of hard-wall/soft-
wall combinations of the kind considered by Mani (ref. 5).

ANALYSTIS

Consider a semi-infinite circular duct with radius &, as shown in figure 2.
(A list of symbols used in this paper appears after the references.) A circumfer-
entially segmented liner with specific acoustic admittance B(6) is placed along the
outer wall, and an initial noise source in terms of a pressure boundary condition is
given at Z = 0. Further, the segmented liner is assumed to consist of two piece-
wise uniform liners with admittances 81 and 32, as shown in figure 3. These
piecewise uniform liners are combined in circumferential series to form a total of
2T strips. The admittance function g(6) is expanded as the Fourier series
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where Bav is the average value of f(0) for the circumferentially segmented liner
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and T 1is the periodicity of the liner. Within the context of this paper an opti-
mized circumferentially segmented liner is defined as a liner configuration possess-
ing uniform admittance g, and § chosen to maximize the transmission loss over

the length L. Finding this optimized liner is the major thrust of this paper.
Dimensionless acoustic waves propagating within the duct depicted in figure 2

satisfy the Helmholtz equation (ref. 9)

VZ P(r,0,z) + Kz P(r,6,z) =0 (2)

. . -igt —_—,= s
in which a time dependence of the form e has been assumed, K = wa/C is
the wave number, P is the dimensionless acoustic pressure, { is the angular
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frequency, V2 is the laplace operator, t denotes time, and ¢ is the ambient
speed of sound. Throughout this paper, all distances are referred tg the duct
radius & and the acoustic pressure is referred to the quantity EE , in which

P is the ambient density of the medium. 1In addition, the boundary condition along
the outer wall is expressed in terms of the admittance B(6) as follows:

opP(1,0,2)

= = ik (@) P(1,0,2) (3)

whereas the boundary condition at the source plane is expressed as follows:
P(r, eyo) = Q(rre) (4)

where Q(r,08) is the known source pressure function.

Equations (2) to (4) constitute a boundary value problem for the acoustic pres-
sure field P(r,0,z). Furthermore, this field can only contain waves running to the
right because the duct in figure 2 is semi-infinite. 1In this paper, the solution is
obtained by the eigenfunction expansion technique (ref. 3). The eigenfunction expan-
sion technique expands the acoustic pressure field in terms of the eigenfunctions of
the circumferentially segmented liner:

P(r, 0,2) = x=Zo A, Py (r,0) exp(ik 2) (5)

in which K is the complex axial wave number and P,(r,8) is the acoustic pressure
eigenfunction for the circumferentially segmented liner. Solutions for the eigen-
function Pl(r,e) and for the axial wave number are developed in the following sec-
tion., These eigenfunctions can also be shown to be orthogonal (ref. 9), so that
substituting equation (5) into equation (4) and making use of the orthogonality con-
dition allows the following determination of AX:

21 1
f f o(r,8) P (r,8) r dr 4o
L 0 .
L 27 1 5
f f Px(r,e) r dr 46
0 0

A measure of the liner effectiveness as a sound absorber is given by the
transmission-loss function TL as

(6)

TL(B1162) = 10 log1o[W(0)/W(L)] (7)



and

27 1 3P
W(z) = Re ip* — r dr 48 (8)
o Jo oz

where Re( ) denotes the real part of the complex expression within the parentheses
and the superscript asterisk indicates the complex conjugate, The value of the
transmission-loss function can be obtained once the solution for the eigenfunction
and for the axial wave number is obtained. The methodology used to obtain these
solutions is described in the following section.

Solution for Eigenfunction and Axial Wave Number

If equation (5) is substituted into equations (2) and (3), each eigenfunction
Pl(r,e) can be shown to satisfy a Helmholtz egquation

2
v Po(r,0) + A; Py(r,8) = 0 (9)

with the homogenecus boundary conditions

BPl(r,G)

o - ik B(0) Px(r,e) =0 (r =1) (10)

where V2 is the two-dimensional Laplace operator in r and 6 and the eigenvalue
N. is related to the axial wave number by the equation

2 2 2
= - 11
A K K2 (11)

Equations (9) to (11) constitute an eigenvalue problem which must be solved to obtain
the eigenfunction P,(r,8) and the axial wave number K,. BAn exact analytical solu-
tion to this eigenvalue problem is possible and is developed in appendix A. The
analytical solution requires finding the roots of a transcendental equation which
include Bessel functions of many orders. To avoid the complexity of iteratively
solving this transcendental equation, a numerical solution to this eigenvalue problem
is obtained. The methodology for obtaining this numerical solution is described in

the following paragraphs.

The numerical technique for obtaining solutions to equations (9) and (10) is
exactly as presented in reference 9 and only enough will be repeated to provide the




necessary nomenclature and ground work for the optimization method. Thus, the
solution for the eigenfunction Pl(r,e) is expressed in the form

M
Ll I (A 1)
z 2 L . m ‘m,n
Px(r,e) = (Am n cos mO + Bm n sin me)————————— (12)

m=0 n=0 4 ' m,n
where A . represents the hard-wall eigenvalues which satisfy the transcendental
equation 'J&(xm n) = 0 and the normalization constant Nm,n is

14

27T 1
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Galerkin's method allows determination of the modal coefficients Aﬁ n and Bﬁ n
as well as the eigenvalue xx. ! !

There remains the problem of determining the number of circumferential and
radial modes (M and N) which are needed in eguation (12) to obtain an accurate
resolution for the eigenmode P,(r,0). Strictly speaking, N should be deter-
mined such that the exact radial dependence of the exact eigenmode is accurately
resolved by the series of hard-wall modes, or

N
Jm(xkr) = Eg% dn Jﬁ(%m'nr)

where d is an appropriately chosen constant. Studies reported in reference 9, as
well as additional ones performed by the author, show that N = 9 gives good agree-
ment between the exact and the numerically computed mode shape for a range of fre-
quencies and m numbers considered here, Thus, results in this paper will be
computed with N = 9.

A simple rule of thumb for determining the upper index of summation M has been
developed., This index should be chosen so that the incident wave can be accurately
resolved by substituting 2z = 0 into equation (5). 1In addition, M is intimately
related to the periodicity of the liner. For purposes of this paper, consideration
is restricted to six circumferential modes. This does not mean that M = 5, since
it is shown in appendix A that only selected values of m should appear in equa-
tion (12) for any spatially discrete given source. Thus, only the first six of these
selected values of m are included. This particular choice of M was based on con-
vergence studies in which it was observed that virtually no change in the transmis-
sion loss occurs as M 1is increased beyond this value for a range of frequencies and
duct lengths,

Scattering From Two Axial Discontinuities

A finite-length circumferentially segmented liner combined with two semi-
infinite hard-wall sections as depicted in figures 4 and 5 is now used for the study
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of the problem of scattering from two axial discontinuities. An acoustic wave pl
from the left is incident at =z = 0. This results in a reflected wave PR in the
first hard-wall section as well as a transmitted wave Pt in the second hard-wall
section. It is necessary to compute the resulting transmission loss over the circum-
ferentially segmented liner. In general, interaction of the incident wave with the
peripheral liner is expected to result in modal transfer of acoustic energy among
radial and circumferential modes of different orders.

The constant geometry of the present problem makes it amenable to the mode match-

ing technique (ref, 3). Thus, the incident, reflected, and transmitted waves in the
hard-wall sections are expressed in terms of hard-wall duct modes

J (N nr) eg?(}fm nz)

M N
PI(r,G,z) = :E: :E: (aI cos mé + bl  sin me) o L L (13)
= — m,n m,n N
m=0 n=0 m,n
M N .
J (A _r) exp(-iK _2z)
PR (r,0,2) = :E: :E: (aR cos m + by _ sin mg)R-_ T . m,n (14)
J
m=0 n=0 ™" m,n Non
14
£ L € £ J (A r) explik = (z - L)]
P (r,96,2) = :E: z, (am cos mp + b sin me ) A SO e (15)
m=0 n=0 ' ! m,n
and
S (16)
m,n m,n

whereas the solution for the circumferentially segmented liner is expressed in terms
of the circumferential liner duct modes

P(r, 8,z) = %é% {A’Q exp(inz) + BX exp[-iKl(z - L)]} Pl(r,e) (17)

in which the eigenmode P and the axial propagation constant X are solutions to
equations (9) to (11). The coefficients in the expansion for the™incident wave are
assumed to be known whereas those in the expansion for the waves in equations (14)
to (17) have to be determined. It is instructive to note that B would also be
zero if the circumferentially lined section was infinitely long. (See eqe. (5).)
However, the finite termination of the lined section leads to reflections of the
acoustic waves at z = 1 as indicated by the additional term Bl exp[—ixl(z - L)]




in equation (17). Further, the length I has been included in equations (15)
and (17) to assure that the waves running to the left and to the right attenuate
properly in their direction of travel,

Physical considerations require that the acoustic pressure and the corresponding
axial derivative remain continuous at each junction between the circumferential liner

and the hard-wall duct. Such requirements ensure continuity to the first order of
mass and momentum between adjacent duct segments. Expressed here in vector form,

{} = {0}

where {0} is a 4 x 1 null vector and {E} is a 4 x 1 residual vector, as shown in
the following:

{o}=§°g

and
{E} =
where
I R
E1 = p (r,9,0) + P (r,0,0) - P(x,0,0)
I R
_oP oP _ BP
E2 _'BE_(r'e'O) +-SE—(r,e,0) az(r,e,o)
t
E, = P{(r,6,L) - P (r,6,L)



and

o'
0z

E = %u,e,z.) (r,0,1)
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The mode matching equations are obtained by requiring that the residual vector be
orthogonal to each of the functions Pl(r,e), or

27 1
{E(x,08)} P (r,0) r dr 46 = {0} (2.=0, 1, 2, eees N) (18)
0 0 2

where

N =(2M + 1)(N + 1) -1

Equation (18) constitutes a system of linear equations which can be expressed in
matrix form as

(Gl {¢} = {F} (19)

where {¢} contains the unknown coefficients of equations (14), (15), and (17) and
{F} contains the known coefficients in the expansion for the incident wave, (See
eg. (13).) Furthermore, the order of this system of equations is 4(2M + 1)(N + 1).
Equation (19) has been solved using Gaussian elimination to obtain {¢}.

The transmission-loss function TL is still given by equations (7) and (8) for
the finite circumferentially segmented liner as

TL = 10 log1O[W(0)/W(L)]

However, the power of the incident wave is

2 I 2

m,n

M N
w(0) =Z~ Z

m=0 n=0

b

Re(Km ) (20)

I
a
m,n .
4

Equation {20) is a general expression which assumes that the incident acoustic wave
is composed of multiple circumferential modes, Transmission-loss values presented in
the "Results and Discussion" section of this paper are for incident waves consisting




of only a single circumferential mode, m = my, SO that the power of the incident
wave reduces to

W(0) = Wmo(O) (21)

and

0] n=0 0

N
I
wm (0) = Z (lam ,n

2 4 Ibrfl 12 Re(Km n) (22)
o' o’

In addition, the output acoustic power is calculated from the transmitted acoustic
wave for z =1 as

Ww(L) = Z Wm(L) (23)
m=0
and
N
WL = D (' I T n|2>Re(Km ) (24)
n=0 4 14 r

Now cutoff modes have the property Re(Km ) =0 (i.e., K < Mm, n) whereas cut-on
modes have the property Re(Km ) > 0. Tﬁus, no acoustic energy is transported by
cutoff modes, Hence, the summatlon in equations (20) to (24) actually reduces to
summation for a finite number of cut-on modes. The transmission-loss function for a
single circumferential-mode input becomes

TL = 10 log, W (o) Z w (L) (25)

whereas the transmission-loss function for circumferential mode m is

TL = 10 l°g10[wmo(0) Wm(L)] (26)




Thus, TL represents the amount of incident acoustic energy that is scattered and
then absorbed from circumferential mode m to circumferential mode m. It should
be noted that no scattering between modes of different circumferential-mode orders
occurs for a uniform or axially segmented liner,

Optimization Method

An optimization method was used to design and study circumferentially segmented
liners for specified modal inputs and source frequencies, Although a variety of
optimization methods exists, good success has been obtained with the so-called Quasi-
Newton optimization algorithms. These algorithms combine the best features of
steepest ascent and Newton's method. Apparently, the Davidon-Fletcher-Powell (DFP)
optimization algorithm has been the most commonly used in duct acoustics (refs. 2
and 3). Thus, the DFP optimization algorithm with the transmission-loss function
TL(51,BZ) as the optimization parameter is used here. The free variables in the
algorithm were taken to be the resistance R and the reactance y of the two
admittance segments

1
B1 TR, O+ ix1

and

1

B e
2 R2 + 1X2

However, contour maps were first obtained to provide good starting values for the
algorithm. More detailed information on the optimization algorithm used herein is

given in appendix B.

RESULTS AND DISCUSSION

Trend studies for both uniform and circumferentially segmented liners are pre-
sented. First, optimized segmented liners are presented and compared to optimized
uniform liners for the semi-infinite duct depicted in figure 2. In order to reduce
computational cost, optimization studies were performed only with L = 2. Second,
studies are presented in which neither the uniform nor the segmented liner is opti-
mized (i.e., off-optimum studies) with L = 2., These off-optimum trend studies
include the effects of the two hard-wall sections (see fig. 4), so equations (23)
and (24) are used to determine transmission losses. Finally, a cursory investigation
of the effects of the lining length I is presented. These effects are investigated
for the treated section installed within a hard-wall duct only. (See egs. (23)

and (24).)
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Optimization Studies

Optimization results for the semi-infinite duct are presented in the following
subsections, First, results for a plane wave input into a uniform liner are com-
pared to- results in an existing work to obtain confidence in the optimization
method. Second, optimized segmented liners are compared with optimized uniform
liners for a range of frequencies and source inputs. Segmented-liner studies
consist of both hard-wall/soft-wall and soft-wall/soft-wall lining configurations.

Plane wave incident into uniform liner.- Optimum transmission-loss values for a
plane wave source are compared to those computed from the exact analysis of refer-
ence 2 in figure 6. Excellent agreement between the two analyses is observed.
Optimum linexr properties computed from the two analyses are presented in figures 7
and 8. Although the optimum resistance values compare favorably, agreement for the
optimum reactance deteriorates with increasing frequency. This analysis shows
excellent agreement at low frequencies but yields higher values than reference 2 as
the frequency increases. However, the differences in reactance fail to change the
optimum transmission losses., Thus, there may be more than one value of admittance in
the complex admittance plane which gives the same transmission-loss value,

Hard-wall/soft-wall optimization studies.- Figure 9 shows the optimum
transmission-loss spectrum for a circumferentially segmented liner with different
periodicities. The source is taken to be a plane wave with the optimum uniform liner
used as a baseline for comparison. The width of the circumferential strips plays an
important role in the liner performance., The performance of the segmented liner is
an increasing function of the periodicity at each value of frequency. In addition,
the uniform liner gives more suppression than the segmented liners. Note that the
segmented-liner results approach the uniform-liner results as the periodicity
increases. Optimum liner properties for the segmented liner are not presented.
However, it was observed that Bav for the segmented liners with high periodicity
simply approaches the optimum admittance for the uniform liner.

Optimum transmission losses are presented in figure 10 for a segmented and a
uniform liner. The incident wave for both cases was chosen to have a circumferential
mode of m =5 (Q(r,0) = cos 50 J5(>\5 0r)). The segmented liner has a periodicity
of 5 so that the m numbers included in equation (12) are m =5, 10, 15, ... from
the discussion in appendix A. As shown in figure 10, the uniform liner gives better
performance than the segmented liner at the optimum point for all frequencies con-
sidered. Optimum liner properties for the liners are shown in figures 11 and 12,
Figure 11 shows an interesting trend for the optimum conductance. (The conductance
is the real part of the complex admittance.) Note that the optimum conductance of
the uniform and segmented liners are approximately equal. On the other hand, fig-
ure 12 shows that the optimum susceptance of the two liners does not show such trends
(i.e., the susceptance is the negative value of the imaginary part of the complex
admittance).

We now turn to optimization studies at the higher frequencies for which high
m-number sources are possible. A cursory investigation of the matrices of equa-
tion (A9) reveals that the off-diagonal terms of these matrices increase in magnitude
with increasing frequency, so that stronger coupling between the m numbers might be
expected at the higher frequencies than the lower ones. Figure 13 compares the
transmission losses for a uniform and a segmented liner, The source for both liners
was a circumferential mode of m = 10 (Q(r,0) = cos 108 J10()\10 0r)) with the
periodicity of the segmented liner equal to 10 (T = 10). The seémented liner gives
greater broadband performance than the uniform liner. Further, the performance
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of the segmented liner approaches that of the uniform liner as the frequency gets
closer to the cut-on value of the m number of the source. The optimum conductance
and the optimum susceptance for the uniform and segmented liners are depicted in
figures 14 and 15. Optimum conductance values for both the uniform and the segmented
liner decrease in magnitude with increasing frequency; however, the segmented-liner
values are higher than the uniform-liner values. Optimum susceptance values for the
uniform liner approach zero at most frequencies, In contrast, the optimum suscept-
ance values for the segmented liner vary with frequency from 0.29 to 0.62.

Figure 16 shows a comparison of the optimum transmission-loss spectrums for a
uniform and a segmented liner in which the circumferential mode order of the source
is 15 (9{(x,0) = cos 158 J15(x15(0r)). Note that the segmented liner gives higher
transmission losses than the uniform liner. Optimum conductance values for the
uniform and the segmented liner are shown in figure 17. Results in this figure show
that the conductance of the segmented liner is roughly twice that of the uniform
liner. Optimum susceptance values for the two liners are given in figure 18 and show
trends consistent with figure 13. Note that the optimum susceptance of the uniform
liner is approximately zero, whereas that of the segmented liner is not.

soft-wall/soft-wall optimization studies.~ The results presented so far
restricted one section of the segmented liner to be a hard wall so that 52 was
zero., Studies were also performed in which 51 and 52 were varied in the opti-
mization algorithm. This lining configuration for which Bo is not restricted to
zero is referred to as the soft-wall/soft-wall circumferentially segmented liner,
Further, results for the soft-wall/soft-wall segmented liner were computed for the
same sources as for the hard-wall/soft-wall optimization studies, Optimum properties
for the plane-wave source and the source with circumferential dependence of m = 5
converge with the uniform-liner optimum properties where By = 32. Although at some
frequencies the admittances were different, the optimum transmission loss for the
segmented liner was the same as the uniform liner to within 1t dB. A significant
result was obtained for the sources with m = 10 and m = 15, For these sources,
the optimization algorithm shows that 52 = 0 + 0i was the optimum B, with g4
being identical to the value obtained from the hard-wall/soft-wall optimization
studies, Further, for the frequencies in figure 13 for which the uniform liner gave
slightly higher transmission losses than the segmented liner, the fully treated
segmented-liner results converged with the uniform-liner values where By = Bye
Thus, a uniform liner stripped with aluminum tape may provide the best method of
increasing the performance of a uniform liner for high m-number sources., Further,
removing the strips of aluminum tape and installing acoustic treatment may actually
decrease the performance of the liner.

Ooff-Optimum Studies

In order to verify the accuracy of the mode matching equations used herein,
sample calculations for a uniform liner with L = 2 were computed and compared to
results obtained from the analysis of Zorumski (ref. 1). Computations obtained from
Zorumski's analysis were based on the assumption that the superposition of 10 soft-
wall modes could adequately represent the incident wave., 1In addition, the version of
Zorumski's analysis used included only single interface effects. Therefore, for
comparison purposes, mode matching equations were developed for a single interface
so that the second hard-wall section (see fig. 5) was removed and replaced by a
nonreflecting termination at 2z = L.
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Values from sample calculations are presented in fiqure 19 for an incident plane
wave (PI(r,G,O) = 1). The admittance values used at each frequency to compute the
transmission losses are optimum for no reflections at =z = L. As depicted in fig-
ure 19, excellent agreement between this analysis and that of reference 1 is obtained.
A plot of values from a second sample calculation is presented in figure 20. Although
the admittance values used to obtain the transmission losses in figure 20 are the same
as those used in figure 19, the incident wave has been changed to

I
P (r,8,0) = cos O J1(x1'0r)

Discrepancies of about 11 percent at K = 4 and 26 percent at K = 5 are observed
in the transmission losses computed from this analysis and that of Zorumski, Excel-
lent agreement is obtained for K > 5. Further, it should be noted that by increas-
ing N from 9 to 20, the discrepancy at K = 4 was reduced to less than 2 percent,
though no significant improvement in the discrepancy at K = 5 was observed, It is
believed this discrepancy can be removed by a superposition of more than 10 soft-wall
modes to represent the incident wave in Zorumski's analysis. Overall, good agreement
has been obtained between this analysis and the analysis used in reference 1. This
leads to a degree of confidence in the mode matching equations developed in this
paper.

Having developed confidence in the analysis, we can now proceed to show that
the analysis gives results consistent with the experimental observations of Mani
(ref. 5). Figure 21 compares transmission-loss values for a uniform and a segmented
liner but for an incident wave with m = 10 (PI(r,6,0) = cos 100 J10(x10 0r)).
Values were computed for L = 2 with equation (25) being used to compute'the
transmission-loss spectrum. The uniform-liner admittance was set equal to B,r where
the conductance and susceptance vary with frequency as shown in figures 13 and 14.
The segmented-liner admittance function was obtained by setting T = 10, 52 = 0 + 0i,
and 31 the same as the uniform liner (i.e., the segmented liner is simply the
uniform liner stripped with 10 evenly spaced strips of aluminum tape), As depicted
in figure 21, significant increases in performance can be realized by stripping the
uniform liner, particularly at the frequencies closest to cut on of the m = 10
circumferential mode. It must be emphasized that the increased suppression of the
segmented liner over the uniform liner as depicted in figure 21 may not hold
generally since the admittance 8 was deliberately chosen so that the segmented
liner was optimized. Thus, different values of the admittance 51 may show the
uniform liner to be superior to the segmented one. This may, however, be repre-
sentative of the effect observed by Mani in reference 5.

A more rigorous comparison of the performance of a uniform and a segmented liner
is obtained when both liners are optimized, or tuned, at a fixed frequency. This
allows a comparison of the off-optimum performance of the two liners. Figure 22
compares the transmission-loss spectrum for a uniform and a segmented liner with a
hard-wall/soft-wall admittance variation. Both the uniform and the segmented liner
are tuned at K = 20 so that they are optimum only at this frequency. The segmented
liner gives better performance not only at the tuning frequency, K = 20, but at
other frequencies as well., Similar trends were observed when the tuning frequency of
the two liners was K = 18 and K = 16.
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Effects of Duct Length

Figures 23, 24, and 25 compare the transmission-loss spectrums computed from
equation (25) for a uniform and a segmented liner for L = 1/2, 1, and 2. The
incident wave for the figures was chosen to be PI(r 0,0) = cos 50 J (xs r)
whereas the admittance function for the segmented liner was chosen so that
T =5, 62 = 0, and B1 = 1,00 - 0.621 (i.e., 51 is an arbitrarily chosen
value). The admittance of the uniform liner was the same as 51 for the segmented
liner, Thus, the segmented-liner configuration can be obtained by stripping the
uniform liner with tape. (This is the configuration proposed by Mani in ref., 5.)
One can see from the figures that the segmented-liner performance increases relative
to the uniform liner as dimensionless duct length increases. For L = 2, the seg-
mented liner performs better than the uniform liner at all frequencies considered.
This is surprising since only 50 percent of the segmented liner is treated (i.e.,

Bz = O)o

The total and modal transmission losses (see eqgs. (25) and (26)) are probably
also strongly affected by the duct length 1I. Figure 26 illustrates total and modal
transmission losses obtained for a segmented liner as a function of dimensionless
duct length. The computer calculations were made with K = 4.4, 8, = 0 + 0i,

61 =1+ 2i, T =1, and PI(r 6,0) = cos B J4 (x 0r) Equations %25) and (26) were
used to compute the transmission losses so that tﬁe effects of both hard-wall inter-
faces are included. Results in the figure show that the circumferentially segmented
liner has scattered acoustic energy into higher order circumferential modes than
those present at the source., Since TL4 is at least 10 dB above TL, and TL4,
only a small portion of the total power is carried by the m = 3 mode in the second
hard-wall section. Note also that TL, and TL, are approximately equal when

1 €L € 2. Thus, the circumferentially segmented liner has distributed energy
equally between the m =1 and m = 2 modes in the second hard-wall section for
this range of 1L values.

CONCLUSIONS

Optimum and off-optimum properties of circumferentially segmented duct liners
have been compared with those of uniform liners to analyze possible benefits of
circumferential segmentation. Based on the results of this work, the following
conclusions have been made:

1. Circumferentially segmented liners scatter acoustic energy among various
circumferential wave numbers m, Results indicate that for some
frequencies and duct lengths, the segmented liner may scatter source energy
equally between a lower and higher order circumferential wave number,

2. For low m-number sources, there is no advantage to an optimized circum-
ferentially segmented liner over an optimized uniform liner.

3. For high m-number sources, an optimized circumferentially segmented liner
gives better performance than an optimized uniform liner,

4., Segmented-liner confiqurations consisting of a hard-wall/soft-wall
combination represent an optimum configuration for high m-number sources,
Thus, replacing the hard-wall strips with acoustic treatment may decrease
the performance of the liner,
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5. Overall, the greatest benefit of circumferentially segmented liners over
uniform liners occurred away from the optimum point. Off the optimum
point, segmented liners give more effective broadband performance with a
50-percent reduction in the amount of acoustic treatment,

6. Increases in performance of the segmented liner relative to the uniform
liner are greatest at frequencies closest to cut on of the circumferential
mode number of the source.,

It should be emphasized that optimization studies were for a duct length-to-
radius ratio of 2, so these conclusions may not hold for all duct lengths., Results
presented here are sufficiently encouraging (particularly for the high m-number
sources) to warrant further studies involving circumferentially segmented liners in
series or in checkerboard liners, the effects of multiple m-number sources, and the
convective and refractive effect of a mean flow.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

August 2, 1982
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APPENDIX A

EXACT SOLUTION FOR CIRCUMFERENTIALLY SEGMENTED LINER

This appendix presents the derivation of the exact solution to the elliptic
partial differential equation (eg. (9))

2 2 .o
Y P’Q(r.e) + }‘1 Px(r,e) =0
and boundary condition
R (6) =0 (a1)
where
6P2(1,6)
Rb(e) =T " ik B(8) Px(1,6) (A2)
and
By + By 2(By — By sin 379 _ sin 579
B(9) = 5 + - \51n TO + 3 + = + ...) (A3)

The goal of the derivation of this equation is to show how the periodicity of the
acoustic liner T selects preferred values of circumferential mode orders. This is
of great utility in that it provides greater physical insight into how source energy
is redistributed into higher circumferential mode orders and it may lead to more
realistic design criteria.

It is easily verifiable that each of the functions cos mf Jm(h r) and
sin mo Jm(h r) 1is a solution to equation (9). Thus, the most general solution to
this equation is obtained by using the superposition principle

@

L L .
Pl(r,e) = gg% (Am cos mf + Bm sin me) Jm(xxr) (n4)

Although arbitrary values of the parameters Ak, B%, and A satisfy equation (9),
only selected values of these parameters will satisfy the boundary conditions imposed
by the circumferentially segmented liner (eq. (A1)). Thus, it is still a matter of
considerable mathematical difficulty to find the discrete values of the coefficients

and BY and of eigenvalue ), which cause the boundary residual R,(9) to
vanish as indicated by equation (A1).
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To satisfy the boundary condition imposed by the circumferentially segmented
liner, one can make use of the fact that the set of functions (cos mf, sin m@)
represents a complete set on the interval 0 to 21 and that only the zero function can
be orthogonal to each member of a complete set, It is necessary that

27
j Rb(e) cos mb 46
0

1}
o

OI 1! -oo) (AS)

(m

and

[}
o

(m =1, 2, eos) (n6)

27
f Rb(e) sin m6 46
0

Equations (A5) and (A6) are an alternate way of satisfying equation (A1) and are
based on Galerkin's method (ref. 10). Further, the collection of equations (A5)
and (A6) for each circumferential mode order m forms a set of simultaneous
equations that can be expressed as

{pl {x} = {0} (A7)

where [D] 1is the complex coefficient matrix, {X} 1is the unknown vector of Fourier
coefficients, and {0} is the null vector. Ordinarily, equation (A7) is solved to
obtain the unknown vector {X} and the eigenvalue A\ is determined by requiring
that the determinant of the coefficient matrix vanish., It will now be shown that
only a subset of this more general equation need be solved for any given source,

The detailed structure of the matrix equation given by equation (A7) for a liner
with periodicity T is

[Do]
{D]

Il
.
—_
o
-—
S

T T T T T
{X} = [XO( X1, X2, enaeyg XT]

where [Ds] is a square matrix, {xs} is an unknown vector of the same order as
[Ds], subscript s is the index 0, 1, ..., T, and the superscript T denotes the

17
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transpose. The diagonal character of [D] implies the periodicity of the acoustic
liner decouples equation (A7) into (T + 1) eigenvalue problems

~

[Do]{xo} = {0}
[D1]{X1} = {0}
o2 )ig) - -

[DT]{XT} = {O}J

where the vectors {xs} are

P
L2 2 I N | s -1
[AS’ A2T—S' A4T—S' LI 2 BT—S’ BT+S’ B3T-—-S’ ooo] ( 14 2I LI T_1)
N S S R | [N R } _
{x,} —< [AO, Ajnr Bynr eeer B, Bl B, e ] (s = 0)
L8 R SN S _
(27, B Agpr eeer Bors Byoy Bers eee] (s =T)

.

where superscript Q& indicates the exact eigenfunction index. Thus, each sub-
eigenvalue problem [DS]{XS} = {0} can be solved independently of each other and
the eigenfunctions P,(r,8) for each subproblem are mutually orthogonal. This means
that the only subprob{ems which need to be solved for any given source are those
which contain the circumferential mode orders of the source. For example, only the
subeigenvalue problem [DO]{XO} = {0} needs to be solved for an axisymmetric (cir-
cumferentially uniform) source., Further, the matrices [Ds] should be truncated at
some finite order. (For example, results in the text use only the first six
circumferential mode orders so that [Ds] will be of order six.) Eigenvalues for
each subproblem are obtained by setting each determinate in equation (A8) to zero

det[DS] =0 (s =0, 1, eee, T)

so that these determinants determined the exact transcendental equations for a cir-
cumferentially segmented liner, Note also that the exact transcendental equation for
a uniform liner is obtained by setting By = B, and allowing the periodicity to
approach infinity. Under these conditions

det[Ds] = Js(xx) - iKB1 JS(AR) (s =0, 1, «c0)

so that results here do degenerate to the exact solution for uniform liners,
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APPENDIX B

DAVIDON-FLETCHER-POWELL (DFP) OPTIMIZATION ALGORITHM

In this appendix, more detailed information concerning the optimization of the
transmission-loss function is presented. This transmission-loss function is
expressed in terms of an admittance wvector TL(B1,BZ) = TL{d}, where {d} is the
4 x 1 admittance vector

—~
Qs
-
]
—
~

Starting with an initial admittance vector {dk}, in which the superscript k
is an iteration counter, it is the purpose of the DFP algorithm to move in a
direction specified by the ascent vector {8 } so that a greater value of the
transmission loss is obtained at the next value of the admittance vector {dk+1}.
The steps in the DFP algorithm (ref. 11) are as follows:

1. Start with an initial admittance vector {do} and any 4 % 4 symmetric
positive-definite matrix {Ho}. (Here, {H } was chosen as the identity

matrix,)
2. Beginning with k = 0, compute ]16}{} = -[Hk]{gk}, where {gk} is the
gradient vector of TL at {d }.

3. Obtain the parameter ak which maximizes

rL({a®) + & {5°))

——
o
W
+
-
——
I

@} + (6"}

{gk+1} _ {gk}

<
w
et
|

and

) - ] e SN [ M)

{6"Hy") Y HE* 1Y)

where the superscript T denotes transpose.

5. Set k =k + 1 and return to step 1.
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For this work, the iteration process was continued until the difference between
{dk+1} and {dk} was at least 1072, Note that the square matrix [Hk] is

updated at each iteration in an attempt to have the algorithm converge more rapidly
than the method of steepest ascent (in which case [Hk] is the identity matrix) and
in an attempt to be computationally more efficient than Newton's method (in which
case [Hk] is the inverse of the matrix of second partials, or the inverse Hessian
matrix, for which evaluation is either too costly or impractical).

Although the DFP algorithm has worked well in the past on duct transmission
problems, there are still defects in the method which should be considered when
optimizing acoustic liners. For example, steps 2 and 4 require the computation of
the gradient of the transmission-loss function, TL({dk}). This gradient must be
computed numerically and the error in the numerical computation affects the
convergence of the algorithm. In this paper the gradient was computed by finite
differencing. On the other hand, step 3 of the DFP algorithm requires that the
function TL({dk} + ak{ék}) be maximized to determine the search parameter o« .
However, since this function cannot be maximized analytically, numerical techniques
must be used, which in turn leads to inaccuracies in the search parameter a . Such
inaccuracies in can cause the algorithm to diverge or wander about meaninglessly
in the admittance plane. The method of repeated parabolic interpolation was used in
this paper to determine « in step 3 of the DFP algorithm. Generally, it has been
the author's experience that no major problems with the algorithm occur with the
method of computing the parameter o and transmission-loss gradient {gk} used
here. A major problem did occur with the initialization vector {do} because the
DFP algorithm is not globally convergent. Originally, the optimum uniform values
were used to initialize the algorithm; however, these values proved to be a local
optimum, and larger transmission-loss values could be obtained by initializing the
algorithm at nonuniform values.

To alleviate the problems associated with the initialization of the DFP
algorithm, an alternate method (henceforth referred to as the DFPC method) has been
used. In the DFPC method, a locus of two-dimensional contours is used to obtain
initialization values which are close to global optimums. These initialization
values are then used as inputs to the DFP optimization algorithm, The steps in the
DFPC method are the following:

1. vary R, and ¥, from 1 to 10 in increments of 0.1.

2. Obtain the optimum §; and transmission-loss value at each increment on R,
or ¥, by contour mapping.

3. Obtain the global optimum from the loci of optimums obtained at each value
of B,.
2

4, Now use the DFP algorithm with the global optimums obtained from step 3 as
starting values.

Although the DFPC method gives global optimum values, it will be quite expensive
because a contour map must be obtained at each value of 52. Generally, results
presented herein use 10 points on both the real and the imaginary axis of 51 to
obtain the contour maps in which the increment spacing in both directions was

unity. However, at some frequencies the increment spacing had to be reduced further
to obtain smooth contours, particularly at frequencies near cut on,
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SYMBOLS

amplitude of right and left moving wave in circumferentially
segmented liner

coefficients in exact expansion of eigenfunction Px(r,e)

coefficients in hard-wall duct expansion of the exact eigen-
function Px(r,e)

duct radius

coefficients of Bessel-Fourier expansion of incident wave in
first hard-wall section

coefficients of Bessel-Fourier expansion of reflected wave in
first hard-wall section

coefficients of Bessel-Fourier expansion of transmitted wave in
second hard-wall section

ambient speed of sound

coefficient in hard-wall duct expansion of Bessel function Jm(xl)
complex admittance vector

complex admittance vector with iteration Xk

complex coefficient matrices

residual vector

components of residual vector {E}

known-constant vector

gradient of transmission-loss function with iteration k
symmetric positive-definite matrix of order k

unit imaginary number

Bessel function of first kind of order m

wave number

axial wave numbers

predetermined length over which transmission loss is computed




P(r, 6,2)

pl(r, 0,2),2(zr, 6,2)

Po(r,0)
Pt(r,e,z)
o(r, 0)

R

Ry (0)

Re( )

r,z

T
TL(B,/B,)
TLm

t

W(z)

W, (2)
() frg)

k
a

B(O), B,/ B,

Bav
{6}
xx’xm,n
o]

{6}

total numer of m and n values

= 0, 1, ese, M -1

normalization constant for hard-wall basis functions
=0, 1, eee, N =1

acoustic pressure field in duct with circumferentially segmented
liner

incident and reflected pressure field in first hard-wall
section

acoustic pressure eigenfunction

transmitted wave in second hard-wall section

source pressure function in semi-infinite duct

resistance of segmented liner

boundary residual

real part of complex expression

radial and axial coordinates

periodicity of segmented liner

total transmission-loss function

transmission loss of circumferential mode m

tine

total sound power at axial location =z

sound power in circumferential mode m at axial location =z
unknown-constant vectors

search parameter

acoustic admittances

average admittance for circumferentially segmented liner
ascent vector with iteration k

eigenvalues of circumferentially segmented and hard-wall duct
ambient density

unknown vector
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w angular frequency

reactance of segmented liner

X
2
v Laplace operator
Subscripts:
2 exact eigenfunction index
m circumferential wave number index
n radial eigenfunction index for hard-wall duct
s subeigenvalue problem index, s = 0, 1, eee, T

Superscripts:

k iteration index
T transpose operator

A bar over a symbol denotes a dimensional quantity.
with respect to the argument.
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Axially segmented Tiner
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Figure 1.~ Duct liner concepts.
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Circumferentially segmented liner
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Figure 2.- Semi-infinite circular duct with circumferentially segmented
liner and coordinate system.
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Figure 3.~ Circumferentially segmented liner with periodicity T = 4.
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Figure 4.- Circumferentially segmented liner installed in hard-wall duct.

First hard-wall Circumferentially Second hard-wall
section7 segmented h‘ner7 section 7
| R e e S A L . |
' |
PI 1 }
—_—— l :
]
1 : Pt
pR : ! z
e e | '
! 1
1 [}

Figure 5.- Configuration used to develop mode matching equations.
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Optimum transmission loss, TL, dB
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Figure 6.~ Optimum transmission-loss spectrum for plane wave incident

Dimensionless frequency, K

into an infinite uniform liner.
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Figure 7.- Optimum resistance for transmission-loss spectrum of figure 6.
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Optimum reactance
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Figure 8.- Optimum reactance for transmission-loss spectrum of figure 6.
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Optimum transmission loss, TL, dB
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Figure 9.- Comparison of optimum transmission-loss spectrums for uniform
and segmented liners for plane-wave source.
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Optimum transmission loss, TL, dB
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10.- Comparison of optimum transmission loss for standing-wave source.
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Figure 11.- Optimum conductance for standing-wave source. m = 5.
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Figure 12.- Optimum susceptance for standing-wave source. m = 5.
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Optimum transmission loss, TL, dB

66 \ ———— Uniform Tiner

&4 - Segmented liner, T = 10
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Dimensionless frequency, K

Figure 13.- Comparison of optimum transmission-loss spectrum for
standing-wave source. m = 10.
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Figure 14.- Optimum conductance for standing-wave source. m = 10.
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Optimum susceptance
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Figure 15.- Optimum susceptance for standing-wave source. m = 10.
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Figure 16.- Comparison of optimum transmission-loss spectrums for
standing-wave source, m = 15.
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Figure 17.- Optimum conductance for standing-wave source. m = 15.

Uniform liner

s m———— Segmented liner, T = 15
S .1 F
=
8 /”‘i\\\‘
2 -~ T -
/7 ‘\\\\
g r /T T e e e
E /
'E’. 0 — ] . 1 T 1 — e 1 T 4_1
e 2 26 28 30 32 34

Dimensionless frequency, K

Figure 18.- Optimum susceptance for standing-wave source. m = 15.
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Figure 19.- Comparison of transmission losses predicted from two different
analyses for plane-wave source.
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Comparison of transmission losses predicted from two different
analyses for standing-wave source. m = 1.
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Figure 21.- Transmission loss of segmented (stripped) and uniform
liners for standing-wave source. m = 10.
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Figure 22.- Off-optimum performance properties for uniform and segmented

liners tuned at K = 20.
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Figure 23.- Transmission-loss spectrums for uniform and segmented (stripped)
liners for standing-wave source. m = 1; L = 1/2.
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Figure 24.~ Transmission-loss spectrum for uniform and segmented (stripped)
liners for standing-wave source. m= 1; I = 1.
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Figure 25.- Transmission-loss spectrum for uniform and segmented (stripped)
liner for standing-wave source. m= 1; L = 2.
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Figure 26.~ Total and modal transmission losses for segmented liner with
standing-wave source. m = 1.



1. ReportiNo. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA TP-2075

4. Title and Subtitle ’ S ' 5. Report Date

CIRCUMFERENTIALLY SEGMENTED DUCT LINERS OPTIMIZED September 1982

FOR AXISYMMETRIC AND STANDING-WAVE SOURCES 6. Performing Organization Code
505-32-03-06

7. Author(s) 8. Performing Organiz_ation Report No.

Willie R. Watson ~-15316

10. Work Unit No.

9. Performing Organization Name and Address

NASA Langley Research Center 11. Contract or Grant No.
Hampton, VA 23665

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Paper

National Aeronautics and Space Administration

. 14. S ing A Cod
washington, DC 20546 ponsoring Agency ¢

15. Supplementary Notes

16. Abstract

Optimum and off-optimum properties of circumferentially segmented duct liners are
compared with those of uniform liners to identify any potential benefits of circum-
ferential segmentation. Results are presented for both infinite and finite circum-
ferentially segmented liners. High- and low-order spinning-mode sources are
considered in the study. The solution for the segmented liner is obtained by a
multimodal expansion of the segmented-liner eigenmodes in terms of a series of hard-
wall duct modes. The coefficients in the hard-wall series are obtained by using
Galerkin's method. Results show that for some frequencies and duct lengths, circum-
ferentially segmented liners scatter energy equally between a higher and lower order
circumferential wave number. Studies for higher order spinning-mode sources show
that an optimized segmented liner with a hard-wall/soft-wall admittance variation
representing an optimum configuration gives better performance than an optimized
uniform liner. Overall, the greatest benefit of the segmented liner over the uni-
form liner occurs under off-optimum conditions. Also, the optimized segmented liner
gives more effective broadband performance than the optimized uniform liner.

17. Key Words (Suggested by Author(s}) 18. Distribution Statement
Circumferentially segmented liners Unclassified - Unlimited
Variable-impedance boundary conditions
Global optimization technique
Galerkin method

Hard-wall duct mode expansion Subject Category 71
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages | 22. Price -
Unclassified Unclassified 48 A03

For sale by the National Technical Information Service, Springfield, Virginia 22161

_

NASA-Langley, 1982




National Aeronautics and THIRD-CLASS BULK RATE . Postage and Fees Paid :
. . . o . © National Aeronautics and I

Space Administration - ‘ ’ - ‘Space Administration S
. ‘ : ‘ : NASA-451 : ;

Washington, D.C. - T ]
20546 : §
Official Business . {
Penalty for Private Use, $300 . . l
!

2 1 1U,d, 527923 30090303 !

JEPT OF THE Al FORCE ;

AF WEAPONS LASORATORY ;

Allde TECANICAL LIBRARY (SUL) f

CIXTLAND AFB Na /7117 %

f

i

) = o I POSTM R: " If Undeliverable (Section 158 .
NMA . .- ‘ OST fASTER Postal Manual) Do Not Return . |

i
i
t
i




